WordPress

Компенсация реактивной мощности где и когда применяется

Компенсация реактивной мощности где и когда применяется - картинка 1

Компенсация реактивной мощности где и когда применяется

Компенсация реактивной мощности на предприятии позволяет существенно сократить расход электроэнергии, снизить нагрузку на кабельные сети и трансформаторы, продлив тем самым их ресурс.

Где необходимы конденсаторные установки?

Как известно Основные потребители электроэнергии на промышленных предприятиях являются такие индуктивные приемники, как асинхронные электродвигатели, трансформаторы, индукционные установки и т. д. Работа этих приемников связана с потреблением реактивной энергии для создания электромагнитных полей.

Реактивная энергия («паразитная» энергия) не производит полезной работы, а, циркулируя между приемником и источником тока, приводит к дополнительной загрузке линий электропередачи и генераторов и, следовательно, снижает коэффициент мощности сети.

Компенсация реактивной мощности где и когда применяется - картинка 3

Наличие реактивной мощности является неблагоприятным фактором для сети в целом
В результате этого:

  • Возникают дополнительные потери в проводниках вследствие увеличения тока
  • Снижается пропускная способность распределительной сети
  • Отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинус угла (ɸ) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: COS(ɸ)=Р/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение COS(ɸ) к единице, тем меньше доля взятой из сети реактивной мощности.

Таким образом, применение Конденсаторных установок остро необходимо на предприятиях, использующих:

  1. Асинхронные двигатели (cos(ɸ)

0.7)
Асинхронные двигатели, при неполной загрузке (cos(ɸ)

0.5)
Выпрямительные электролизные установки (cos(ɸ)

0.6)
Электродуговые печи(cos(ɸ)

0.6)
Индукционные печи(cos(ɸ)

0,2-0.6)
Водяные насосы(cos(ɸ)

0.7)
Машины, станки(cos(ɸ)

0.5)
Сварочные трансформаторы(cos(ɸ)

0.4)
Лампы дневного света(cos(ɸ)

Для повышения коэффициента мощности применяют силовые конденсаторы и конденсаторные установки, являющиеся наиболее выгодными источниками получения реактивной мощности.

Плюсы от внедрения Установок компенсации реактивной мощности:

  1. Снижение потребления электроэнергии (от 10-20%, а при cos φ (0,5 и менее) потребность в электроэнергии может сократиться более чем на 30%)и как следствие уменьшение платежей (за счет «исключения» реактивной энергии из сети)
  2. Уменьшение нагрузки (до 30%) элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевается их срок службы
  3. Увеличение пропускной способности системы электроснабжения потребителя (от 30-40%), что позволит подключить дополнительные мощности без увеличения стоимости сетей.

Компенсация реактивной мощности где и когда применяется - картинка 5

Увеличение КМ решается подключением к сети конденсаторных батарей, производящих реактивную энергию в количестве, достаточном для компенсации реактивной мощности, возникающей в нагрузке.

Способы компенсации

Наиболее выгодный способ компенсации определяется конкретными условиями данного предприятия, и его выбор производится на основании технико-экономических расчетов и рекомендаций наших специалистов. Как правило, компенсация должна производиться в той же сети (на том же напряжении), к которой подключен потребитель, что обеспечивает минимальные потери.

Какие решения мы предлагаем

Наша Компания предлагает полный спектр услуг, А ИМЕННО:

  1. Проведение выездных замеров параметров качества электроэнергии.
  2. Подготовка проекта, подбор необходимого оборудования с экономическим обоснованием его внедрения (с конкретными сроками окупаемости установок и денежной экономии).
  3. Изготовления оборудования, как серийного исполнения, так и нестандартного (учитывающую специфику конкретного предприятия).
  4. Проведение шеф монтажных работ, а также гарантийное и после гарантийное обслуживание.
    Мы можем предложить как типовые решения, так и спроектировать, изготовить и внедрить на предприятии Заказчика уникальную систему компенсации реактивной мощности, учитывающую специфику конкретного предприятия.

В зависимости от потребности Заказчика установки могут изготавливаться как для внутренней, так и для уличной установки. Кроме этого возможен монтаж установок внутри утепленного блок-контейнера.

Для предприятий с резкопеременной нагрузкой (предприятия с большим количеством подъемно-транспортного оборудования, мощного сварочного оборудования и т.д.) мы предлагаем тиристорные конденсаторные установки, которые обеспечивают переключение ступеней конденсаторов с задержкой не более 20 мс.

Для выработки оптимального технического решения мы предлагаем выездные замеры параметров качества электроэнергии в сети предприятия. При необходимости наши инженеры выполнятшефмонтаж оборудования, а также любое гарантийное и послегарантийное обслуживание и ремонт.

Преимущества использования УКРМСферы применения
  • Исключить провалы напряжения и отключения электрооборудования из-за перегрузок
  • Повысить КПД электроустановки
    на 20%
  • Сократить затраты на подключение нового оборудования на 15-20%
  • Уменьшить потребление электроэнергии на 5-10%
  • Поддерживать качество электроэнергии
  • Освободить до 30%
    трансформаторной мощности

Наши услуги

Замеры параметров качества электрической сети

Для оптимизации энергопотребления и повышения надежности электроснабжения на Вашем предприятии, а также правильного подбора технических и конструктивных решений необходимых для надежной работы электроустановок, рекомендуем провести замеры качества электроэнергии.

Ремонт и сервисное обслуживание установок компенсации реактивной мощности.

«Новосибирский Завод Конденсаторных Установок» выполнит капитальный ремонт, модернизацию и автоматизацию низковольтных и высоковольтных конденсаторных установок любого типа и мощности.

http://nzku.ru/2-uncategorised/12-zachem-nuzhna-kompensatsiya-reaktivnoj-moshchnosti

Компенсация реактивной мощности где и когда применяется

Компенсация реактивной мощности где и когда применяется - картинка 6

Компенсация реактивной мощности где и когда применяется - картинка 7

Конденсаторы для силовой электроники

Компенсация реактивной мощности где и когда применяется - картинка 8

Конденсаторы для повышения коэффициента мощности

Компенсация реактивной мощности где и когда применяется - картинка 9

Установки компенсации реактивной мощности 0.4кВ

Компенсация реактивной мощности где и когда применяется - картинка 10

Моторные и светотехнические конденсаторы

Большинство потребителей электроэнергии представляют собой электрические машины (трансформаторы, асинхронные двигатели, оборудование для дуговой сварки), в которых переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе φ между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а cos φ при малой нагрузке уменьшается. Например, если cosφ двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40. Малонагруженные трансформаторы также имеют низкий cosφ. Соответственно при компенсации реактивной мощности ток, потребляемый из сети, снижается, в зависимости от cos φ на 30-50 %, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Применение установок компенсации реактивной мощности необходимо на предприятиях, использующих:

  • Асинхронные двигатели ( cosφ

0.7)
Асинхронные двигатели, при неполной загрузке ( cosφ

0.5)
Выпрямительные электролизные установки ( cosφ

0.6)
Электродуговые печи ( cosφ

0.6)
Водяные насосы ( cosφ

0.8)
Компрессоры ( cosφ

0.7)
Машины, станки ( cosφ

0.5)
Сварочные трансформаторы ( cosφ

Компенсация реактивной мощности асинхронных двигателей

В таблице, приведенной ниже, представлены значения, мощности косинусного конденсатора необходимого для компенсации реактивной мощности при работе асинхронного двигателя, подключаемого к клеммам асинхронного двигателя.

Максимальная мощность двигателяМаксимальная скорость вращения, об/мин
30001.5001.000
л.с.кВтМаксимальная мощность кВАр
118223
1511345
2015456
2518577,5
3022689
40307,51011
503791112,5
6045111314
10075172225
150110242933
180132313638
218160354144
274200434753
340250525763
380280576370
482355677686

Для более точного определения мощности компенсации необходимы измерения.

Компенсация реактивной мощности где и когда применяется - картинка 11

Если мощность конденсатора меньше или равна величине, обозначенной в таблице или Qc 90% от Io·U, то необходимо добавить контактор (К2) в схему управления двигателем. Контакторы (К1) (К2) включаются одновременно.

Зависимость между мощностью конденсатора Qc=2·π·f·C·V 2 ·10 -9 кВАр и емкостью C=Qc·10 9 /2·π·f·V 2 (мкФ), где:

  • C — емкость конденсатора, (мкФ);
  • Qc — мощность конденсатора, (кВАр);
  • f — частота сети (Гц);
  • V — напряжение (В);
  • π — число ПИ (3,141592654).

Конденсаторные установки для компенсации реактивной мощности силовых трансформаторов.

Для работы силового трансформатора необходима реактивная энергия для создания электромагнитного потока. Таблица ниже дает приблизительные фиксированные значения, которые установлены согласно мощности и нагрузке трансформатора. Эти значения могут изменяться в зависимости от технологии изготовления и типа трансформатора.

Номинальная мощность трансформатора, кВАРеактивная мощность конденсаторной установки кВАр
Без нагрузки75% нагрузки100% нагрузки
100356
16047,510
2004912
25051115
31561520
40082025
500102530
630123040
800204055
1000255070
1250307090
200050100150
250060150200
315090200250
4000160250320
5000200300425

Мощность фиксированного конденсатора для компенсации реактивной мощности трансформатора, рекомендуется выбирать соответствующей потреблению трансформатора при нагрузке 75 %.

Для более точного определения мощности компенсации необходимы измерения.

Применение установок компенсации реактивной мощности эффективно в производствах:

0.6)
Цементный завод ( cos φ

0.7)
Деревообрабатывающее предприятие ( cos φ

http://www.nucon.ru/reactive-power/where-necessary-reactive-power-compensation.php

ПОПЕРЕЧНАЯ ЕМКОСТНАЯ КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ

Алексей Кувшинов, д.т.н., Тольяттинский государственный университет
Александр Хренников, д.т.н., АО «НТЦ ФСК ЕЭС», г. Москва
Владимир Карманов, ген. директор,
Кирилл Замула, главный конструктор,
Евгений Володин, инженер-конструктор, ООО «Энергия Т», г. Тольятти
Игорь Шкуропат, к.т.н., Электрощит Самара, г. Самара
Ильяс Галиев, аспирант, кафедра ИИТ, НИУ МЭИ
Николай Александров, аспирант, кафедра АЭЭС, СамГТУ

В последнее время существенно увеличилось потребление реактивной мощности как электроприемниками промышленных предприятий из-за недостаточного использования компенсирующих устройств, так и коммунально-бытовыми потребителями в результате массового распространения компьютерной техники и других новых типов электроприемников. По некоторым оценкам, общее потребление реактивной мощности приблизилось к 1 квар на 1 кВт активной мощности [1–3]. Негативные последствия передачи таких объемов реактивной мощности от электростанций к узлам потребления общеизвестны – это и дополнительные потери активной мощности, и снижение пропускной способности распределительных сетей, и потери реактивной мощности в трансформаторах, составляющие в среднем 30–40% реактивной мощности нагрузки на шинах 6–10 кВ. В распределительных линиях (РЛ) 35–110 кВ потери составляют 10–20% реактивной составляющей нагрузки на шинах этих линий [4]. Таким образом, суммарные потери реактивной мощности в распределительной сети могут составлять от 40 до 60% общего объема передаваемой реактивной мощности.

Распределительная сеть с точки зрения физики протекающих процессов, связанной с неизбежным образованием магнитных полей вокруг фазных проводов РЛ и обмоток распределительных трансформаторов, является таким же потребителем реактивной мощности, как и все остальные электроприемники, имеющие активно-индуктивный характер. Поэтому термин «потери реактивной мощности» нельзя считать абсолютно корректным, поскольку так называемые потери вполне могут быть скомпенсированы.

Следует добавить, что даже полная компенсация реактивной мощности на шинах (в основном 0,4 кВ) потребителей не обеспечивает компенсацию потерь реактивной мощности в распределительной сети. Данное обстоятельство делает правомерной постановку задачи компенсации реактивной мощности не только электроприемников, подключенных к распределительной сети, но и реактивной мощности, потребляемой собственно РЛ и трансформаторами.

НАТУРАЛЬНЫЙ РЕЖИМ РАБОТЫ РАСПРЕДЕЛИТЕЛЬНОЙ ЛИНИИ

Режим передачи натуральной мощности является наиболее благоприятным, поскольку в силу сбалансированности электромагнитного поля линия не потребляет и не генерирует реактивную мощность, а потери активной мощности минимальны [5]. Для линии без потерь величина натуральной мощности определяется простым выражением [4]:

где U НОМ – номинальное напряжение линии; Компенсация реактивной мощности где и когда применяется - картинка 13– волновое сопротивление линии без потерь; x, b – погонное индуктивное сопротивление и погонная емкостная проводимость линии соответственно, величину которых можно оценить с помощью эмпирических выражений [6, 7]:

где Компенсация реактивной мощности где и когда применяется - картинка 14– среднегеометрическое расстояние между фазными проводами;

D 12, D 13, D 23 – расстояние между проводаКомпенсация реактивной мощности где и когда применяется - картинка 15ми первой, второй и третьей фаз;

Компенсация реактивной мощности где и когда применяется - картинка 16– фактический радиус многопроволочных проводов;

F – суммарное сечение токоведущей и стальной частей фазного провода.

Выражения (2) и (3) позволяют определить величину волнового сопротивления по известным геометрическим размерам линии:

Для магистральных линий электропередачи с номинальным напряжением 220 кВ и выше натуральная мощность превышает значения, определяемые экономической плотностью тока [5, 6]. Поэтому при номинальных нагрузках возможна работа магистральных линий в режимах, близких к натуральному.

В распределительных сетях с номинальным напряжением 6–110 кВ согласование передаваемой мощности с натуральной мощностью линии не считается необходимым. Поэтому мощность магнитного поля РЛ многократно превышает мощность электрического поля. В результате РЛ являются такими же потребителями реактивной мощности, как и большинство электроприемников.

Анализируя выражения (1) и (4), можно отметить, что наиболее рациональным путем повышения натуральной мощности может служить искусственное изменение погонных параметров (x, b), которое приведет к уменьшению волнового сопротивления.

СОСТАВЛЯЮЩИЕ РЕАКТИВНОЙ МОЩНОСТИ РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ

Погонная мощность магнитного Q M и электрического Q ЭЛ полей трехфазной линии определяется выражениями [5]:

где J – плотность тока в фазном проводе линии.

Распределительные линии 6, 10, 20 и 35 кВ работают, как правило, в радиальных схемах. Обычное сечение фазных проводов линий 6–20 кВ составляет 35, 50 и 70 мм, а линий 35 кВ – 95 мм 2 . Распределительные линии 110 кВ работают как в кольцевых, так и в радиальных сетях, а среднее сечение фазных проводов составляет 150 и 240 мм 2 [8].

Следует отметить два характерных значения плотности тока в фазных проводах РЛ:

  • допустимая по нагреву плотность тока J (t), величина которой обычно не превышает 5 А/мм 2 ;
  • экономическая плотность тока J (Э), при которой обеспечивается минимум приведенных затрат на содержание и эксплуатацию линии. Величина J (Э) зависит от района расположения линии и количества часов использования максимума нагрузки. Для предварительных оценок можно использовать среднее значение J (Э) = 1 А/мм [4].

В табл. 1 представлены численные значения погонной мощности магнитного Q M(э), Q M(t) и электрического Q ЭЛ полей РЛ 6–110 кВ, а также значения результирующей погонной мощности:

и суммарной реактивной мощности всех распределительных линий:

для режимов работы с экономической J (э) и допустимой по нагреву J (t) плотностью тока в фазных проводах (здесь lΣ – суммарная протяженность РЛ одного класса напряжения).

Сравнивая значения погонной мощности магнитного и электрического полей, можно отметить, что работа в режиме передачи натуральной мощности и даже генерации реактивной мощности (знак «–» в табл. 1) возможна только в РЛ с номинальным напряжением 110 кВ при плотности тока в фазных проводах близкой к экономическому значению. При плотности тока, превышающей экономическое значение, работа всех РЛ сопровождается значительным потреблением реактивной мощности.

Следует обратить внимание, что при допустимой по нагреву плотности тока в фазных проводах суммарная реактивная мощность, потребляемая наиболее массовыми распределительными линиями 6, 10 кВ, в ≈ 1,61 раза превышает реактивную мощность, потребляемую всеми распределительными линиями 20, 35 и 110 кВ вместе взятыми.

Таблица 1. Составляющие мощности магнитного и электрического полей распределительных линий 6–110 кВ

http://news.elteh.ru/arh/2017/103/04.php

Для чего нужна компенсация реактивной мощности и как она реализуется

Определение

Полная электрическая мощность состоит из активной и реактивной энергии:

S=Q+P

Здесь Q – реактивная, P – активная.

Реактивная мощность возникает в магнитных и электрических полях, которые характерны для индуктивной и емкостной нагрузки при работе в цепях переменного тока. При работе активной нагрузки, фазы напряжения и тока одинаковы и совпадают. При подключении индуктивной нагрузки – напряжение отстает от тока, а при емкостной – опережает.

Компенсация реактивной мощности где и когда применяется - картинка 17

Косинус угла сдвига между этими фазами называется коэффициентом мощности.

cosФ=P/S

P=S*cosФ

Косинус угла всегда меньше единицы, соответственно активная мощность всегда меньше полной. Реактивный ток протекает в обратном направлении относительно активного и препятствует его прохождению. Так как по проводам протекает ток полной нагрузки:

S=U*I

То и при разработке проектов линий электропередач нужно учитывать потребление активной и реактивной энергии. Если последней будет слишком много, то придется увеличивать сечение линий, что ведет к дополнительным затратам. Поэтому с ней борются. Компенсация реактивной мощности снижает нагрузку на сети и экономит электроэнергию промышленных предприятий.

Где важно учитывать косинус Фи

Давайте разберемся, где и когда нужна компенсация реактивной мощности. Для этого нужно проанализировать её источники.

Компенсация реактивной мощности где и когда применяется - картинка 18

Примером основной реактивной нагрузки являются:

  • электрические двигатели, коллекторные и асинхронные, особенно если в рабочем режиме его нагрузка мала для конкретного двигателя;
  • электромеханические исполнительные механизмы (соленоиды, клапана, электромагниты);
  • электромагнитные коммутационные приборы;
  • трансформаторы, особенно на холостом ходу.

На графике изображено изменение cosФ электродвигателя при изменении нагрузки.

Компенсация реактивной мощности где и когда применяется - картинка 19

Основу электрохозяйства большинства промышленных предприятий составляет электропривод. Отсюда и высокое потребление реактивной мощности. Частные потребители не оплачивают её потребление, а предприятия оплачивают. Это вызывает дополнительные затраты, от 10 до 30% и более от общей суммы счета за электроэнергию.

Виды компенсаторов и их принцип действия

В целях снижения реактива используют устройства компенсации реактивной мощности, т.н. УКРМ. В качестве компенсатора мощности на практике используют чаще всего:

Так как в течении времени количество реактивной мощности может изменяться, значит и компенсаторы могут быть:

  1. Нерегулируемые – обычно конденсаторная батарея без возможности отключения отдельных конденсаторов для изменения емкости.
  2. Автоматические – ступени компенсации изменяются в зависимости от состояния сети.
  3. Динамические – компенсируют, когда нагрузка быстро изменяет свой характер.

В схеме используется, в зависимости от количества реактивной энергии от одного до целой батареи конденсаторов, которые можно вводить и выводить из цепи. Тогда и управление может быть:

  • ручным (автоматические выключатели);
  • полуавтоматическим (кнопочные посты с контакторами);
  • неуправляемыми, тогда они подсоединены напрямую к нагрузке, включаются и отключаются вместе с ней.

Конденсаторные батареи могут устанавливаться как на подстанциях, так и непосредственно возле потребителей, тогда устройство подключается к их кабелям или шинам питания. В последнем случае обычно рассчитываются на индивидуальную компенсацию реактива конкретного двигателя или другого прибора – часто встречается на оборудовании в электрических сетях 0,4 кВ.

Компенсация реактивной мощности где и когда применяется - картинка 20

Централизованная компенсация выполняется либо на границе балансового раздела сетей, либо на подстанции, при чем может выполняться в высоковольтных сетях 110 кВ. Хороша тем, что разгружает высоковольтные линии, но плохо то, что не разгружаются линии 0,4 кВ и сам трансформатор. Этот способ дешевле остальных. При этом можно и централизованно разгрузить и низкую сторону 0,4 кВ, тогда УКРМ подключается к шинам, к которым подключена вторичная обмотка трансформатора, соответственно разгружается и он.

Компенсация реактивной мощности где и когда применяется - картинка 21

Также может быть и вариант групповой компенсации. Это промежуточный вид между централизованным и индивидуальным.

Другой способ – компенсация синхронными двигателями, которые могут компенсировать реактивную мощность. Проявляется, когда двигатель работает в режиме перевозбуждения. Такое решение используется в сетях 6 кВ и 10 кВ, также встречается и до 1000В. Преимуществом этого метода перед установкой конденсаторных батарей – возможность использования компенсатора для совершения полезной работы (вращения мощных компрессоров и насосов, например).

Компенсация реактивной мощности где и когда применяется - картинка 22

На графике изображена U-образная характеристика синхронного двигателя, которая отражает зависимость тока статора от тока возбуждения. Под ней вы видите, чему равен косинус фи. Когда он больше нуля – двигатель имеет емкостной характер, а когда косинус меньше нуля – нагрузка является емкостной и компенсирует реактивную мощность остальной части индуктивных потребителей.

Заключение

Подведем итоги, перечислив основные тезисы о компенсации реактивной энергии:

  • Назначение – разгрузка линий электропередач и электрических сетей предприятий. В состав устройства могут входить антирезонансные дроссели для уменьшения уровня гармоник в сети.
  • За неё не уплачивают счета частные лица, но платят предприятия.
  • В состав компенсатора входят батареи конденсаторов или в этих же целях используют синхронные машины.

Также рекомендуем просмотреть полезные видео по теме статьи:

http://samelectrik.ru/kompensaciya-reaktivnoj-moshhnosti.html

Опыт Практикующего Инженера: Мифы про устройства компенсации реактивной мощности

Опыт Практикующего инженера: Мифы про устройства компенсации реактивной мощности

За многие годы проектирования, производства и запуска конденсаторных установок мне приходилось сталкиваться с вопросами, которые поначалу приводили в недоумение меня и весь наш техотдел. Они касались и конденсаторных установок, и в целом компенсации реактивной мощности. А иногда звонящие звонят и сразу говорят, что им нужна конденсаторная установка. Казалось бы не Клиент, а мечта. Но при выяснении нюансов оказывалось, что человек ждет от установки того, чего она сделать не может – ни теоретически, ни практически.

В этой статье я расскажу о некоторых заблуждениях, относительно конденсаторных установок – с которыми чаще всего приходилось сталкиваться.

Первый случай. Мы включили конденсаторную установку, но расходы на реактив не уменьшились.

Звонят в техподдержку. Звонящий — не наш Клиент

— Проконсультируйте, пожалуйста. Мы поставили конденсаторную установку, но у нас платежи по реактиву не изменились. В чем причина?

Мы начинаем задавать вопросы для проверки правильности подключения, правильности программирования регулятора. Есть много объективных и субъективных причин, из-за которых устройство компенсации реактива может работать хуже ожидаемого.

По ответам мы понимаем, что все включено правильно, установка расположена и подключена в нужной точке.

Тогда мы предлагаем — отправить нам почасовое потребление реактивной энергии, чтоб удостовериться в правильности параметров самой установки и Компенсация реактивной мощности где и когда применяется - картинка 23получаем ответ:

— Я не могу Вам отправить почасовку. У меня счетчик не считает реактив. Мы как платили по среднему до установки конденсаторной, так и платим.

Мы объяснили, что для начала нужно поменять существующий счетчик на счетчик,который считает все. И актив и реактив. И только после этого можно и правильно подобрать конденсаторную и увидеть экономию. Не получится экономить то, что нельзя посчитать.

Заменили счетчик уже Клиенту, через месяц работы посмотрели на параметры и рассчитали требуемые характеристики. Клиенту не пришлось покупать новую КРМ — мы модернизировали существующую (добавили ступеней, уменьшили значение минимальной ступени, заменили регулятор 6-ступенчатый на 8- ступенчатый).

Косинус Фи — 0,98

Платит за реактив 15% от того, что платил раньше.

Все (со счетчиком) — окупилось за 4 месяца.

Второй случай. Правда, что конденсаторная установка ПРЕВРАЩАЕТ реактивную энергию в активную.

Для того, чтоб развернуто ответить на этот вопрос, нужно написать в этом посте курс электротехники — поэтому прошу просто поверить мне, как достаточно сведущему человеку.

Это неправда.

Компенсация реактивной мощности где и когда применяется - картинка 25Это две разные ЭЛЕКТРИЧЕСКИЕ энергии и конденсаторная установка – это не волшебный преобразователь, который берет реактивную энергию и превращает ее в активную.

При подключении конденсаторной установки в сеть, компенсируется реактивная энергия (опять же — не вся) и сокращается потребление активной энергии (в некоторых случаях доходит до 3,2 % — данные из личного опыта).

Все это приводит к уменьшению затрат на электроэнергию. Это тот редкий случай, когда счет от «Гор/Облэнерго» радует.

Но волшебного превращения реактива в актив не происходит.

Третий случай. Мы установили конденсаторную установку, но она не свела реактив к нулю.

Ошибка – считать, что конденсаторная установка уберет полностью реактив. Часть реактивной энергии потребляется оборудованием – например, двигателями. Они генерируют реактив, но часть из него потребляют.

Поэтому, если Вам будут обещать, что сведут реактив к нулю, т.е. в счетах за электричество напротив строки «Реактивная энергия» будет стоять ноль – знайте, что Вас вводят в заблуждение.

Нормальным значение реактивной энергии, является тогда, когда оно в пределах 20-25% от значения потребленной активной энергии. То есть,если в счете за электроэнергию у Вас потребление активной энергии 100000 кВт/ч., а потребление реактивной 20-25000 кВар – значит у Вас все нормально с реактивом и вы платите за реально потребленную реактивную энергию

Четвертый случай: Откровенный обман – компенсация реактивной энергии в быту.

В интернете много рекламы приборов, продавцы которых утверждают, что включив их в сеть – Вы уменьшите расход электроэнергии на 50%. Агрессивность рекламы заставила меня более внимательно изучить их фантастический прибор.

И что оказалось.

Оказывается, что эта дикая экономия достигается благодаря тому, что в сеть подключают конденсаторную батарею (конденсатор), которая:

1. Убирает реактивную энергию

2. Преобразует реактив в актив

И еще много чего делает.

По первому пункту – компенсация реактивной энергии в бытовой сети никак не повлияет на Ваш кошелек, т.к. все бытовые пользователи платят только за активную энергию

По второму пункту – это откровенное введение в заблуждение. В науке нет ни теоретических обоснований подобной возможности, ни практических реализаций.

Понятно, что не все люди разбираются во всех этих тонкостях, т.к. каждый из нас мастер в своем деле (кроме футбола и политики – тут мы все мастера:).

Именно этим и пользуются господа-придумщики всяких волшебных устройств.Компенсация реактивной мощности где и когда применяется - картинка 26

UPD: Тема описанных эконом-устройств более широко раскрыта по ссылке: http://electrik.info/main/voprosy/245-pribory-dlya-yekonomii-yelektroyenergii-mif-ili.html

Надеюсь, данная статья будет вам полезна и оградит от ошибок.

Все,что я и сотрудники Вольт Энерго пишем в разделе «Статьи» на нашем сайте – «основано на реальных событиях» J

http://shop.voltenergo.com.ua/opyt-praktikuyuschego-inzhenera:-mify-pro-ustroystva-kompensatsii-reaktivnoy-moschnosti.

Устройства компенсации реактивной мощности. Памятка по основным понятиям

Памятка для менеджеров по продаже электрооборудования.

Раздел: Устройства компенсации реактивной мощности. Основные понятия.

1. Что такое реактивная мощность?

Это условно часть полной мощности, необходимая для работы индуктивной нагрузки в сетях потребителей: асинхронных электродвигателей, трансформаторов и др.

2. Что является показателем потребления реактивной мощности?

Показателем потребления реактивной мощности является коэффициент мощности — Cos φ.

Cos φ уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Поэтому необходимо стремиться к повышению Cos φ, т.к. низкий Cos φ приводит к перегрузке трансформаторов, нагреву проводов и кабелей и другим проблемам в работе электрических сетей потребителей.

3. Что такое компенсация реактивной мощности?

Это компенсация дефицита реактивной мощности (или просто компенсация реактивной мощности) в сети, что характерно для низкого Cos φ.

4. Что такое устройство компенсации реактивной мощности (УКРМ)?

Устройство, компенсирующее дефицит реактивной мощности у потребителя.

5. Какие устройства компенсации реактивной мощности (УКРМ) применяются?

Самыми распространенными устройствами компенсации являются устройства с применением специальных (косинусных) конденсаторов – конденсаторные установки и конденсаторные батареи.

6. Что такое конденсаторная установка и конденсаторная батарея?

Конденсаторная установка – установка, состоящая из конденсаторов и вспомогательного оборудования — выключателей, разъединителей, регуляторов, предохранителей и т.д. (Рис.1).

Компенсация реактивной мощности где и когда применяется - картинка 27

Конденсаторная батарея – электрически соединенная между собой группа единичных конденсаторов (Рис.2).

Компенсация реактивной мощности где и когда применяется - картинка 28

7. Что такое фильтр — компенсирующая установка (ФКУ)?

Это конденсаторная установка, у которой конденсаторы защищены от токов гармоник специальными (фильтровыми) дросселями (Рис.3).

Компенсация реактивной мощности где и когда применяется - картинка 29

8. Что такое гармоники?

Это ток и напряжение, имеющее частоту, отличную от частоты сети 50 Гц.

9. От каких гармоник защищаются конденсаторы?

От нечетных гармоник относительно частоты 50 Гц (3,5,7,11 и т.д.). Например:

Гармоника№3: 3 х 50 Гц = 150 Гц.

Гармоника№5: 5 х 50 Гц = 250 Гц.

Гармоника№7: 7 х 50 Гц = 350 Гц … и т.д.

10. Почему надо защищать конденсаторы в ФКУ?

Обычные косинусные конденсаторы, применяемые для компенсации, нагреваются под действием тока гармоник до температуры, недопустимой для нормальной работы; при этом сильно сокращается срок их службы и они быстро выходят из строя.

11. Что это — силовой фильтр гармоник?

Это установка, служащая для фильтрации (уменьшения уровня) гармоник в сети (Рис.4). Состоит из конденсаторов и индуктивностей (реакторов), настроенных на определенную гармонику (см. выше).

Компенсация реактивной мощности где и когда применяется - картинка 31

12. Чем отличается ФКУ от фильтра гармоник?

ФКУ служит для компенсации реактивной мощности; конденсаторы и индуктивности (дроссели) подобраны таким образом, что токи гармоник не проходят через конденсаторы. В фильтрах гармоник наоборот: конденсаторы и индуктивности (реакторы) подобраны так, что токи гармоник проходят (замыкаются) через конденсаторы, поэтому общий уровень гармоник в сети снижается и качество электроэнергии улучшается.

13. Значит ли это, что конденсаторы в фильтрах гармоник нагреваются – ведь через них проходят токи гармоник?

Да, но в фильтрах гармоник используются конденсаторы, специально предназначенные для этого, рассчитанные на большие токи, например, маслонаполненные.

14. В каких режимах работают конденсаторные установки?

— автоматический режим работы – когда конденсаторная установка управляется при помощи регулятора (другие названия: контроллер, регулятор РМ).

— ручной режим – конденсаторная установка управляется вручную, с панели управления установки.

— статический режим – установка только включается и отключается выключателем, внешним или встроенным, без регулирования.

15. Какие параметры установки являются главными?

Главными параметрами УКРМ являются мощность установки и номинальное (рабочее) напряжение.

16. В чем измеряется мощность и напряжение УКРМ?

Мощность УКРМ измеряется в кВАр – киловольт ампер реактивный.

Напряжение измеряется в кВ – киловольтах.

17. Что это — ступени регулирования?

Вся мощность автоматической или с ручным управлением УКРМ разбивается на определенные части – ступени регулирования, которые подключаются регулятором или вручную к сети в зависимости от требуемой компенсации дефицита реактивной мощности. Например:

Мощность установки: 100 кВАр.

Ступени регулирования: 25+25+25+25 — всего 4 ступени.

Поэтому мощность может изменяться со ступенью 25 кВАр: 25, 50(25+25), 75(25+25+25) и 100(25+25+25+25) кВАр.

18. Кто определяет, сколько и какие ступени нужны?

Это определяется заказчиком по результатам обследования сети.

19. Как расшифровать обозначение конденсаторных установок?

Обозначение ВСЕХ устройств компенсации реактивной мощности строится практически по одним правилам:

1. Обозначение типа установки.

2. Номинальное напряжение, кВ.

3. Мощность установки, кВАр.

4. Мощность наименьшей ступени регулирования, кВАр (для регулируемых УКРМ).

5. Климатическое исполнение.

6. Категория размещения.

20. Что такое климатическое исполнение и категория размещения?

Климатическое исполнение — виды климатического исполнения машин, приборов и других технических изделий по ГОСТ 15150-69. Климатическое исполнение, как правило, указывается в последней группе знаков обозначений всех технических устройств, в том числе и УКРМ.

Буквенная часть обозначает климатическую зону:

У — умеренный климат;

ХЛ — холодный климат;

Т — тропический климат;

М — морской умеренно-холодный климат;

О — общеклиматическое исполнение (кроме морского);

ОМ — общеклиматическое морское исполнение;

В — всеклиматическое исполнение.

Следующая за буквенной цифровая часть означает категорию размещения:

1 — на открытом воздухе;

2 — под навесом или в помещении, где условия такие же, как на открытом воздухе, за исключением солнечной радиации;

3 — в закрытом помещении без искусственного регулирования климатических условий;

4 — в закрытом помещении с искусственным регулированием климатических условий (вентиляция, отопление);

5 — в помещениях с повышенной влажностью, без искусственного регулирования климатических условий.

Таким образом, У3, например, означает, что установка предназначена для работы в умеренном климате, в закрытом помещении, без искусственного регулирования климатических условий, то есть без отопления и вентиляции.

21. Какие обозначения УКРМ низкого напряжения встречаются чаще всего?

Это старое обозначение УКРМ:

УКМ58 – Установка конденсаторная, с регулированием по мощности, автоматическая;

0,4 – номинальное напряжение, кВ;

100 – номинальная мощность, кВАр;

25 – мощность наименьшей ступени, кВАр;

У3 – изделие для умеренного климата, для размещения в холодном помещении без вентиляции.

Другое, современное, часто встречающееся обозначение:

КРМ – установка Компенсации Реактивной Мощности (или Компенсатор Реактивной Мощности).

Остальное как в предыдущем примере.

22. Как обозначаются высоковольтные установки?

Старое (и чаще встречаемое) обозначение высоковольтных установок имеет свои особенности.

УКЛ(или П)56(или 57)-6,3-1350 У3

УКЛ(П) – установка конденсаторная, кабельный ввод слева(Л) или справа(П);

56 – установка с разъединителем;

57 – установка без разъединителя;

6,3 – номинальное напряжение, кВ;

1350 – номинальная мощность, кВАр.

У3- климатическое исполнение и категория размещения.

23. Как обозначаются конденсаторные батареи?

Обозначение конденсаторных батарей строится по такому же принципу:

БСК-110-52000 (или 52) УХЛ1

БСК – Батарея Статических Конденсаторов (Батарея Статическая Конденсаторная)– имеется в виду, что это нерегулируемая (статическая) конденсаторная батарея.

110 – номинальное напряжение, кВ;

52000 – номинальная мощность, кВАр;

Или 52 – номинальная мощность, МВАр (мегавольт ампер реактивных) — 1МВАр = 1000 кВАр.

УХЛ1 – работа в умеренно холодном климате, на открытом воздухе – районы Крайнего Севера, например.

24. Что означает буква «М» в обозначении УКРМ?

Иногда в обозначении УКРМ встречается в конце буква «М». Чаще всего она обозначает, что установка располагается в контейнере (модуле), реже – модернизированная.

25. Что такое модульная конденсаторная установка?

Установка, состоящая из конденсаторных модулей – конструктивно и функционально законченных блоков (Рис.5).

Компенсация реактивной мощности где и когда применяется - картинка 32

26. Есть ли принципиальные отличия в конструкции УКРМ разных производителей?

Принципиальных отличий в конструкции УКРМ низкого напряжения с электромеханическими контакторами (самых распространенных) нет.

То же можно сказать и об установках высоковольтных — управляемых и статических, а также конденсаторных батареях.

27. Есть ли принципиальные различия в комплектации УКРМ разных производителей?

Да, есть. Разная комплектация, то есть применение комплектующих разных производителей сильно влияет на надежность и конечную стоимость установок. Поэтому во избежание недоразумений рекомендуется выбирать установки с комплектацией из компонентов известных производителей, с хорошей статистикой наработки на отказ.

28. Что входит в комплект поставки УКРМ?

Стандартный комплект поставки УКРМ:

— конденсаторная установка в стандартной упаковке;

— руководство по эксплуатации;

В этом разделе даны самые необходимые сведения по устройствам компенсации реактивной мощности для менеджеров по продажам. В следующем разделе будет рассказано о компонентах УКРМ.

http://www.proektant.ru/content/1367.html

Литература

  1. Омельченко, О. История политических и правовых учений. История учений о государстве и праве; М.: Эксмо, 2011. — 576 c.
  2. Все о пожарной безопасности юридических лиц и индивидуальных предпринимателей. — М.: Альфа-пресс, 2010. — 480 c.
  3. Летушева, Н. И. Теория государства и права / Н.И. Летушева, М.В. Летушева. — М.: Академия, 2008. — 208 c.
  4. Скрынник, А. М. Правоведение / А.М. Скрынник. — М.: Мини Тайп, 2013. — 352 c.
  5. Теория государства и права. — М.: КноРус, 2012. — 400 c.

Добавить комментарий

Мы в соцсетях

Подписывайтесь на наши группы в социальных сетях